Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units

نویسندگان

  • Trung Dac Nguyen
  • Carolyn L. Phillips
  • Joshua A. Anderson
  • Sharon C. Glotzer
چکیده

a r t i c l e i n f o a b s t r a c t Molecular dynamics (MD) methods compute the trajectory of a system of point particles in response to a potential function by numerically integrating Newton's equations of motion. Extending these basic methods with rigid body constraints enables composite particles with complex shapes such as anisotropic nanoparticles, grains, molecules, and rigid proteins to be modeled. Rigid body constraints are added to the GPU-accelerated MD package, HOOMD-blue, version 0.10.0. The software can now simulate systems of particles, rigid bodies, or mixed systems in microcanonical (NVE), canonical (NVT), and isothermal-isobaric (NPT) ensembles. It can also apply the FIRE energy minimization technique to these systems. In this paper, we detail the massively parallel scheme that implements these algorithms and discuss how our design is tuned for the maximum possible performance. Two different case studies are included to demonstrate the performance attained, patchy spheres and tethered nanorods. In typical cases, HOOMD-blue on a single GTX 480 executes 2.5–3.6 times faster than LAMMPS executing the same simulation on any number of CPU cores in parallel. Simulations with rigid bodies may now be run with larger systems and for longer time scales on a single workstation than was previously even possible on large clusters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient molecular dynamics simulations with many-body potentials on graphics processing units

Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within di...

متن کامل

Chrono: a Parallel Physics Library for Rigid-body, Flexible-body, and Fluid Dynamics

This contribution discusses a multi-physics simulation engine, called Chrono, that relies heavily on parallel computing. Chrono aims at simulating the dynamics of systems containing rigid bodies, flexible (compliant) bodies, and fluid-rigid body interaction. To this end, it relies on five modules: equation formulation (modeling), equation solution (simulation), collision detection support, doma...

متن کامل

Massively parallel chemical potential calculation on graphics processing units

Oneand two-stage free energy methods are common approaches for calculating the chemical potential from a molecular dynamics or Monte Carlo molecular simulation trajectory. Although these methods require significant amounts of CPU time spent on post-simulation analysis, this analysis step is wellsuited for parallel execution. In this work, we implement this analysis step on graphics processing u...

متن کامل

Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)

Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...

متن کامل

Visualization Tool for GPGPU Programming

The running times of some sequential programs could be greatly reduced by converting and running its parallelizable, time dominant code on a massively, parallel processor architecture. Example program application areas include: bioinformatics, molecular dynamics, video and image processing, signal and audio processing, medical imaging, and cryptography. A low cost, low power, parallel computing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 182  شماره 

صفحات  -

تاریخ انتشار 2011